Мультиплексный анализ

50

ормальное функционирование клетки обеспечивается сложным ансамблем последовательных ферментативных реакций, запускаемых после взаимодействия вне- и внутриклеточных рецепторов с разнообразными сигнальными молекулами. В последнее время достигнут значительный прогресс в обнаружении и описании сигнальных путей, запускающих тот или иной механизм реакции клетки на внешние воздействия – от регуляции клеточного цикла до программируемой гибели. Изменение свойств белков-звеньев каскада приводит к модуляции сигнала или переключению на альтернативные пути и является, с одной стороны, индикатором и/или возможной причиной многих заболеваний, а с другой – демонстрирует результат терапевтического вмешательства и используется при выборе эффективных лекарственных препаратов. При лабораторном анализе изменения в функционировании сигнального пути выглядят как увеличение или уменьшение количества одних молекул относительно других, при этом определяется либо концентрация белков, либо их предшественников – мРНК. Уровень экспрессии, или изменение относительного количества, компонентов сигнального процесса представляет собой, таким образом, своеоразный «молекулярный портрет» конкретного заболевания и является диагностическим и потенциальным прогностическим фактором, а также может быть использован для выбора оптимальной терапии.

В связи с этим в диагностике активно разрабатываются методы, позволяющие определять в одном образце большое количество аналитов для одновременного мониторинга сразу нескольких компонентов того или иного сигнального пути. Они представляют собой, как правило, модификации мультипараметрической проточной цитофлуориметрии или гибридизации анализируемых молекул с большим количеством специфических зондов, размещённых на подложке в определённом порядке, реже – ПЦР.

Анализ предсуществующих антител к HLA классов I и II

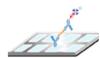
При мультиплексном анализе на твёрдой подложке можно размес-тить большое количество зондов, что позволяет провести исследование образца одновременно по множеству параметров. В качестве примера можно привести систему *DynaChip* производства *Dynal* (*Invitrogen*) для скрининга на предсуществующие антитела к HLA I и II-го классов, необходимому при подборе доноров для трансплантации белки упорядоченно размещаются на подложке, образуя чип. Каждый чип размещается в лунке стрипованного микропланшета. Процедура аналогична стандартному ИФА и позволяет использовать автоматический анализатор.

• См. раздел «Проточная цитометрия», стр. 485, 498

•• См. раздел «HLA-типирование», стр. 533

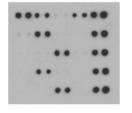
Таким образом, при полной загрузке менее чем за 3 часа можно в автоматическом режиме исследовать 96 образцов сыворотки (объём пробы - 8 мкл) на репрезентативную панель предсуществующих антител.

Анализ цитокинов


Инкубация мембраны с нанесёнными антителами с образцом (~200 мкл сыворотки)

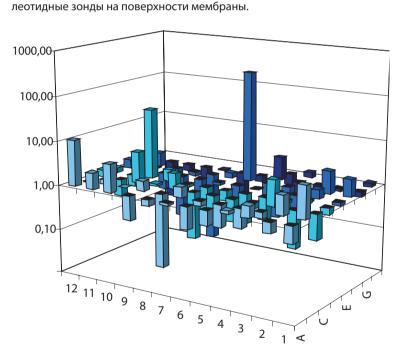
Инкубация со смесью биотинилированных антител

Инкубация с конъюгатом стрептавидин-ПХ



Инкубация с хемилюминесцентным субстратом

Детекция сигнала (ОптиХеми, БиоХеми)



Наборы Cartesian производства BioSource (Invitrogen) предназначены для одновременной детекции до 36 цитокинов. Процедура анализа аналогична Вестерн-блоттингу: антитела размещаются на мембране, на последнем этапе регистрируется хемилюминесцентный сигнал на рентгеновской плёнке или с помощью видеосистемы с охлаждением детектирующей матрицы для накопления слабого сигнала. Метод достаточно чувствителен и позволяет детектировать менее 100 пкг белка/мл.

Сигнал можно нормализовать относительно интенсивности положительного контроля, что позволяет сравнивать концентрации цитокинов не только в одной пробе, но и между образцами.

Анализ занимает около 4 часов, в качестве исследуемого материала используется 200 мкл сыворотки или плазмы или ~2 мл культуральной среды.

Детекция мРНК с использованием амплификационных технологий позволяет изучить экспрессию гена в отсутствие белка, особенно когда последний присутствует в количестве, не достаточном для анализа ИФА. Относительно простая процедура одновременного анализа нескольких генов цитокинов с использованием стандартного оборудования предлагается BioSource (Invitrogen). Обратнотранскриптазную ПЦР (ОТ-ПЦР) проводят в одну или две стадии, причём в одной пробирке можно анализировать до 8 генов одновременно, включая ген домашнего хозяйства, используемый для нормализации. Ампликоны разделяют электрофорезом в агарозе и идентифицируют по размеру относительно маркера. Оптимизация условий проведения нескольких реакций ПЦР в одной пробирке – достаточно сложная задача. Экспрессию намного большего количества генов можно изучить, разместив комплементарные уникальным генным последовательностям олигонук-

Биочипы (*microarrays*) в классическом варианте, рассчитанные на анализ экспрессии нескольких тысяч и более генов одновременно, ориентированы на научно-исследовательские лаборатории, поскольку существуют серьёзные проблемы со сравнением и воспроизводимостью результатов, полученных в разных лабораториях на чипах различных производителей, что ограничивает их использование в рутинном анализе. Кроме того, интерпретация результатов требует довольно сложного программного обеспечения и высокой квалификации персонала.

www.biochemmack.ru 481

Более перспективными на настоящий момент являются «макрочипы» (macroarrays), заведомо ориентированные на анализ меньшего количества параметров. Компания «Superarray» ограничивает количество анализируемых генов, объединяя их в наборы по признаку участия в конкретных биологических процессах, сигнальных или метаболических путях – апоптозе, ангиогенезе, канцерогенезе, воспалениях, ответах на стрессы и т.п. «Superarray» предлагает:

- Макрочипы на мембранах, аналогичные вышеописанным белковым, но с нанесёнными олигонуклеотидными зондами для единовременного анализа нескольких сотен генов.
- «Синтетический» вариант, объединяющий мультиплексность биочипов и простоту выполнения

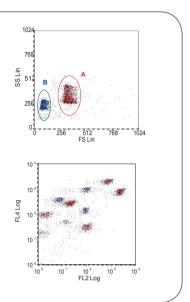
ПЦР в реальном времени в присутствии красителя SYBR Green I, так называемый «ПЦР-чип». Эта позиция представляет собой стандартные ПЦР-планшеты (96 пробирок) с парой праймеров в каждой пробирке на 84 анализируемых гена и гены домашнего хозяйства для нормализации.

В качестве стартового материала используется препарат тотальной РНК (3-4 мкг). Исследуемый образец сравнивается с контрольным, например, РНК из опухолевой ткани и здоровой. Результатом является профиль экспрессии, т.е. относительное её изменение для каждого гена в исследуемом и контрольном образцах, представленное в том или ином виде (см. рисунок). Это позволяет делать заключения о комплексной реакции организма на различные виды воздействий.

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

Кат.№	Описание
88896	Haбop Dynascreen для скрининга и анализа на специфичность антител к HLA I и II-го классов,
	96 тестов
888100	Процессор DynaChip для автоматического скрининга и анализа
	на специфичность антител к антигенам HLA I и II-го классов
BHM0011	Набор для определения цитокинов человека, Set 1, 4 мембраны, 18 цитокинов
BHM0021	Набор для определения цитокинов человека, Set 2, 4 мембраны, 21 цитокин
BHM0031	Набор для определения цитокинов человека, Set 3, 4 мембраны, 36 цитокинов
Цитокины воспаления	
GHM0015	Цитокины человека, наб. 1: GM-CSF, IL-1β, IL-6, IL-8, IL-12p40, TGF-β1, TNF-а, GAPDH, 50 тестов
GHM0035	Цитокины человека, наб. 3: GM-CSF, IL-1Ю, IL-1Ѭ, IL-6, IL-8, TGF-β1, TNF-а, GAPDH, 50 тестов
Цитокины Th1/Th2	
GHM0045	Цитокины человека, наб. 1: IFN-Ю, IL-2, IL-4, IL10, IL-12p40, IL-13, GAPDH, 50 тестов
Анализ экспрессии ген	ов методом ПЦР в реальном времени (84 гена в образце)
APHS-024A	Гены, ассоциированные с процессом ангиогенеза
APHS-012A	Гены апоптоза
APHS-033A	Гены, определяющие направление канцерогенеза
APHS-020A	Гены-регуляторы клеточного цикла
APHS-038A	Гены, ассоциированные с атеросклерозом
APHS-005A	Гены, ассоциированные с раком молочной железы и сигнальным
	каскадом рецепторов эстрогена
APHS-002A	Гены лекарственного метаболизма
APHS-013A	Белки внеклеточного матрикса и молекулы адгезии
APHS-004A	Гены, определяющие лекарственную резистентность опухоли
APHS-011A	Гены цитокинов воспаления и их рецепторов
APHS-022A	Гены хемокинов и их рецепторов
APHS-025A	Гены сигнального каскада NFkB
APHS-014A	Поиск сигнальных путей
APHS-035A	Гены сигнального каскада ТGFЮ, опоср д ованного ВМР (к <mark>остным морфогенетическим белко</mark>

Кат.№	Описание
APHS-043A	Гены сигнального каскада Wnt
APHS-021A	Гены общих цитокинов
APHS-023A	Гены, ассоциированные с диабетом
APHS-029A	Гены сигнального каскада повреждений ДНК
APHS-015A	Гены эндотелиальных клеток
APHS-041A	Гены факторов роста
APHS-032A	Гены сигнального каскада гипоксии
APHS-030A	Гены инсулинового сигнального каскада
APHS-039A	Гены сигнального каскада JAK/STAT
APHS-061A	Гены сигнального каскада МАР-киназы
APHS-031A	Гены нейротрофина и рецепторов
APHS-062A	Гены сигнального каскада окиси азота
APHS-059A	Гены Notch
APHS-026A	Гены, ассоциированные с остеогенезом
APHS-405A	Гены стволовых клеток
APHS-003A	Гены отклика на стресс и ксенобиотики
APHS-018A	Гены сигнального каскада Toll-like рецепторов
APHS-028A	Гены, ассоциированные с метастазированием
APHS-064A	Гены интерферонов и их рецепторов
APHS-036A	Гены белков-транспортеров и ионных каналов
APHS-060A	Гены рецепторов и регуляторов трансмиттеров
APHS-065A	Гены, ассоциированные с окислительным стрессом
APHS-063A	Гены TNF и их рецепторов


Для верификации результатов предлагаются праймеры для индивидуальных генов производства Superarray, а также праймеры и зонды BioSource (Invitrogen).

www.biochemmack.ru 483

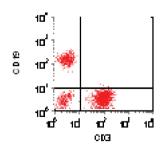
FlowCytomix

Одновременное определение в одном образце целого ряда растворимых аналитов методом проточной цитофлуориметрии

Анализ до 20 аналитов в образце одновременно

- Цитокины
- Растворимые молекулы клеточной адгезии
- Маркеры риска развития и прогноза сердечно-сосудистых заболеваний, ожирения

Бесплатное программное обеспечение FlowCytomixPro для анализа получаемых результатов



Контрольные материалы *вескман* соистея... для проточной цитофлуориметрии

• Препараты цельной крови или выделенных клеток с известной экспрессией CD-маркеров основных популяций

Immuno-Trol™ Cells Immuno-Trol™ Low Cells Cyto -Trol™ Control Cells Stem-Trol™ Control Cells

